If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x+x^2-1.1=0
a = 1; b = 1; c = -1.1;
Δ = b2-4ac
Δ = 12-4·1·(-1.1)
Δ = 5.4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{5.4}}{2*1}=\frac{-1-\sqrt{5.4}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{5.4}}{2*1}=\frac{-1+\sqrt{5.4}}{2} $
| 9(x-3)=7x-39 | | 31x=180 | | 168=8(4n+5) | | 1.5k=4.4 | | 7w+9=5w-7 | | 13=y/3+11 | | 72–x–1=5x | | 21f-4=6f+5 | | -7.8s+5.38+3.8s=-4.16-5.8s | | 3x−13°=58 | | 9-m=-9-10m-9 | | p-(-1)=9 | | 15=(10-5x) | | 8q+6q-7q=7 | | x=32x-2 | | 1.8c+9.14=-0.1c-2.26 | | 33f+3=6f-7 | | -5-10-3j=-6j+9 | | -6n+9=-3n-21-6 | | 20k-8k+k-9k-k=18 | | 11=3q−4 | | 10+10-5r=5r-10 | | -7+3s=-7-6s | | -8-10j=9+7-7j | | -12=3(5-2n)+9n | | 1.1x+4.3=6.3 | | 6h-9=7+4h | | 15j+-19j-10j-13j=-14 | | 18x²+27x-5=0 | | -10-5g=-6-3g | | -31=8m+9 | | 18f+2=6f-7 |